tags:" genes"
184 results found in 7 ms.

Page 1 of 12 next

More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

Also referred to as the Microbial Genetics Project Lab, this is a hands-on research course designed to introduce the student to the strategies and challenges associated with microbiology research. Students take on independent and original research projects that are designed to be instructive with the goal of advancing a specific field of re
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variatio
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest D
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

The mammalian brain easily outperforms any computer. It adapts and changes constantly. Most importantly, the brain enables us to continuously learn and remember. What are the molecular mechanisms that lead to learning and memory? What are the cellular roles that activity-regulated gene products play to implement changes in the brain?How do
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

A millennial challenge in biology is to decipher how vast arrays of molecular interactions inside the cell work in concert to produce a cellular function. Systems biology, a new interdisciplinary field of science, brings together biologists and physicists to tackle this grand challenge through quantitative experiments and models. In this co
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discu
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clin
Author(s):
Tag(s):

More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

The genetic manipulation of plants and animals and their use in agriculture is one of the most controversial scientific developments of recent times. This unt takes a look at the 'science behind the headlines' and the complex interactions between scientific and social factors. By the end of the unit it's hoped that you will have a clearer idea of both what is GM makes possible as well as what may be thought desirable.
Author(s):
Tag(s):
More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

Animal life has adapted to survive in the most unlikely and inhospitable habitats. This unit looks at the surprisingly diverse desert climates throughout the world and mammals, birds, lizards and amphibians that survive there. It splits these animals into three groups according to their strategy for survival: evaders, evaporators and endurers, then discusses how these strategies work on a biochemical and physiological level.
Author(s):
Tag(s):


More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

Hibernation is an ingenious adaptation that some animals employ to survive difficult conditions in winter. This unit examines the differences between hibernation and torpor, and discusses the characteristic signs of hibernation behaviour. It explores the triggers that bring on hibernation, and whether internal signals or external season cues are predominant. It also examines the physiological adaptations that occur in hibernating animals. This unit builds on and develops ideas introduced in the OpenLearn unit Animals at the extremes: The desert environment (S324_1).
Author(s):
Tag(s):
More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This unit looks at two topics that are of immense worldwide social, economic, ethical, and political importance – ‘addiction’ and ‘neural ageing’. You will develop a Master's level approach to the study of specific issues within these two important subject areas.
Author(s):
Tag(s):


More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

Genes are units of inheritance that contribute to a person’s behaviour and health. In this unit you will learn what genes, DNA and chromosomes are and how they combine to make the human genome. You will also learn how the principles of inheritance work, the effect that our genetic make-up has on health, and how genetic material is passed on from generation to generation.
Author(s):
Tag(s):
More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

Genomes are composed of DNA, and a knowledge of the structure of DNA is essential to understand how it can function as hereditary material. DNA is remarkable, breathtakingly simple in its structure yet capable of directing all the living processes in a cell, the production of new cells and the development of a fertilized egg to an individual adult. DNA has three key properties: it is relatively stable; its structure suggests an obvious way in which the molecule can be duplicated, or replicated; and it carries a store of vital information that is used in the cell to produce proteins. The first two properties of DNA are analysed in this unit.
Author(s):
Tag(s):


More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This unit explores how information contained in DNA is used, explaining the flow of information from DNA to RNA to protein. Also introduced are the concepts of transcription (as occurs between DNA and RNA) and translation.
Author(s):
Tag(s):
More OCW like this | |
Published by: The Open University | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This Unit looks at three different uses of genetic testing: pre-natal diagnosis, childhood testing and adult testing. Such tests provide genetic information in the form of a predictive diagnosis, and as such are described as predictive tests. Pre-natal diagnosis uses techniques such as amniocentesis to test fetuses in the womb. For example,This Unit looks at three different uses of genetic testing: pre-natal diagnosis, childhood testing and adult testing. Such tests provide genetic information in the form of a predictive diagnosis, and as such are described as predictive tests. Pre-natal diagnosis uses techniques such as amniocentesis to test fetuses in the womb. For example, it is commonly offered to women over 35 to test for Down's syndrome. Childhood testing involves testing children for genetic diseases that may not become a problem until they grow up, and adult testing is aimed at people at risk of late-onset disorders, which do not appear until middle age. In addition, we address some of the issues involved in carrier testing, another predictive test. This involves the testing of people from families with a history of genetic disease, to find out who carries the gene, and who therefore might pass the disease onto their children even though they themselves are unaffected. Here the aim is to enable couples to make informed choices about whether or not to have children, and if so whether they might have a genetic disease studies 'proteins'. Starting with a simple analysis of the molecular make up, the Unit moves on to look at the importance of protein and how they are digested and absorbed.
Author(s):
Tag(s):




184 results found.

Page 1 of 12 next