UniversityOCWPlataform:"Microsoft Content Management Server" resourceType:"ocw" tags:" dimensional analysis"
Categories
Geo
9 results found in 4 ms.

Page 1 of 1

More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This subject provides an introduction to the mechanics of materials and structures. You will be introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of materials and structures and you will learn how to solve a variety of problems of interest to civil and environmental engineers
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and mach
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course teaches the art of guessing results and solving problems without doing a proof or an exact calculation. Techniques include extreme-cases reasoning, dimensional analysis, successive approximation, discretization, generalization, and pictorial analysis. Applications include mental calculation, solid geometry, musical intervals, lo
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

The focus of the course is the concepts and techniques for solving the partial differential equations (PDE) that permeate various scientific disciplines. The emphasis is on nonlinear PDE. Applications include problems from fluid dynamics, electrical and mechanical engineering, materials science, quantum mechanics, etc.
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course is about mathematical analysis of continuum models of various natural phenomena. Such models are generally described by partial differential equations (PDE) and for this reason much of the course is devoted to the analysis of PDE. Examples of applications come from physics, chemistry, biology, complex systems: traffic flows, sho
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical
Author(s):
Tag(s):


9 results found.

Page 1 of 1