UniversityOCWPlataform:"Microsoft Content Management Server" resourceType:"ocw" tags:"electrical engineering and computer science"
Categories
Geo
166 results found in 8 ms.

Page 1 of 11 next

More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This subject is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish use
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course introduces students to the principles of computation. Upon completion of 6.001, students should be able to explain and apply the basic methods from programming languages to analyze computational systems, and to generate computational solutions to abstract problems. Substantial weekly programming assignments are an integral part
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

6.003 covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equ
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

6.004 offers an introduction to the engineering of digital systems. Starting with MOS transistors, the course develops a series of building blocks — logic gates, combinational and sequential circuits, finite-state machines, computers and finally complete systems. Both hardware and software mechanisms are explored through a series of design
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course provides an introduction to the fundamental principles and techniques of software development that have greatest impact on practice. Topics include capturing the essence of a problem by recognizing and inventing suitable abstractions; key paradigms, including state machines, functional programming, and object-oriented programmin
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course provides an introduction to mathematical modeling of computational problems. It covers the common algorithms, algorithmic paradigms, and data structures used to solve these problems. The course emphasizes the relationship between algorithms and programming, and introduces basic performance measures and analysis techniques for th
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This subject is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish use
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course is taken mainly by undergraduates, and explores ideas involving signals, systems and probabilistic models in the context of communication, control and signal processing applications. The material expands out from the basics in 6.003 and 6.041. The treatment involves aspects of analysis, synthesis, and optimization. Topics covere
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course examines signals, systems and inference as unifying themes in communication, control and signal processing. Topics include input-output and state-space models of linear systems driven by deterministic and random signals; time- and transform-domain representations in discrete and continuous time; group delay; state feedback and o
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, dev
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, deve
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal phys
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals co
Author(s):
Tag(s):


More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic so
Author(s):
Tag(s):
More OCW like this | |
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

This course provides an integrated introduction to electrical engineering and computer science, taught using substantial laboratory experiments with mobile robots. Our primary goal is for you to learn to appreciate and use the fundamental design principles of modularity and abstraction in a variety of contexts from electrical engineering an
Author(s):
Tag(s):




166 results found.

Page 1 of 11 next