tags:" development"
Categories
1 results found in 14 ms.

Page 1 of 1

|
Published by: Massachusetts Institute of Technology | Language: English
Share in: Share this resource in Facebook Share this resource in Twitter Share this resource in LinkedInd Share this resource in Google+ Share this resource in Pinterest Share this resource in Blogger Share this resource in Tumblr

Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic enginee
Author(s):
Tag(s):
Similar courses
  • Description:Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic enginee
  • Description:Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic enginee
  • Description:Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic enginee


1 results found.

Page 1 of 1